

COURSE OVERVIEW DE0923 Petroleum Project Economics & Risk Analysis

Course Title

Petroleum Project Economics & Risk Analysis

Course Date/Venue

February 01-05, 2026/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Reference DE0923

Course Duration/Credits
Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Petroleum Project Economics & Risk Analysis. It covers the importance of petroleum project economics and its role in decision-making; the basic principles of economics in petroleum; the petroleum fiscal, time value of money and key performance indicators; the exploration costs, development costs, operating costs and abandonment and decommissioning costs; the price forecasting, break-even analysis and risk analysis and management; and the quantitative and qualitative risks analysis, mitigating risks in petroleum projects and portfolio management.

During this interactive course, participants will learn the contractual and fiscal risks; addressing risks associated with contracts, agreements and changes in government policies; the equity, debt and project finance and the importance of environmental, social and governance (ESG) in project decision-making and financial performance; the economic evaluation of shale oil, shale gas and other unconventional resources; the strategic planning in petroleum, long-term planning and integration of economic evaluation into corporate strategy; and the global energy transition, digitalization and the role of technologies like AI, IoT and data analytics in improving project economics.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on petroleum project economics and risk analysis
- Discuss the importance of petroleum project economics and its role in decisionmaking
- Identify the basic principles of economics in petroleum covering the concepts of supply and demand, price elasticity and economic indicators relevant to the oil and gas industry
- Recognize petroleum fiscal, time value of money and key performance indicators
- Identify the exploration costs, development costs, operating costs and abandonment and decommissioning costs
- Carryout price forecasting, break-even analysis and risk analysis and management
- Employ quantitative and qualitative risks analysis, mitigating risks in petroleum projects and portfolio management
- Recognize contractual and fiscal risks and address risks associated with contracts, agreements and changes in government policies
- Discuss equity, debt and project finance including the importance of environmental, social and governance (ESG) in project decision-making and financial performance
- Apply economic evaluation of shale oil, shale gas and other unconventional resources
- Carryout strategic planning in petroleum, long-term planning and integration of economic evaluation into corporate strategy
- Determine global energy transition, digitalization and the role of technologies like AI, IoT and data analytics in improving project economics

Who Should Attend

This course provides an overview of all significant aspects and considerations of petroleum project economics and risk analysis for petroleum engineers, geologists and geoscientists, financial analysts, project managers, energy consultants, business development professionals, entrepreneurs and investors.

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Fee

US\$ 8,000 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Instructor

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Chris Kapetan, PhD, MSc, is a Senior Drilling & Petroleum Engineer with over 30 years of international experience within the onshore and offshore oil & gas industry. His wide experience covers Horizontal & Multilateral Wells, Well Completion & Stimulation, Artificial Lift System Selection & Design, Drilling Practices, Drilling Fluids Technology, Drilling Operations, Directional Drilling, Formation Damage Evaluation & Preventive, Formation Damage Remediation, Drilling & Formation Damage, Simulation Program for The International Petroleum Business, Well Testing & Analysis, Well Design, Well Testing & Oil Well Performance, Well Test Design Analysis, Well Test Operations, Well Testing &

Perforation, Root Cause Analysis (RCA), RCA Method for Process Plant, RCA Techniques, Control Well-Flow Lines Parameters, Decision Analytic Modelling Methods for Economic Evaluation, Probabilistic Risk Analysis (Monte Carlo Simulator) Risk Analysis Foundations, Sulphur, Sour Natural Gas, Natural Gas Sweeting, Petroleum Production, Field Layout, Production Techniques & Control, Surface Production Operations, Project Risk Analysis, Feasibility Analysis Techniques, Capital Operational Costs, Flowmetering & Custody Transfer and Oil Refinery. Further, he is also well-versed in Enhanced Oil Recovery (EOR), Electrical Submersible Pumps (ESP), Oil Industries Orientation, Geophysics, Cased Hole Formation Evaluation, Cased Hole Applications, Cased Hole Logs, Production Wells Operations, Production Facilities Management, Perforating Methods & Design, Perforating Operations, Fishing Operations, Well & Reservoir Testing, Reservoir Stimulation, Hydraulic Fracturing, Carbonate Acidizing, Sandstone Acidizing, Drilling Fluids Technology, Drilling Operations, Directional Drilling, Artificial Lift, Gas Lift Design, Gas Lift Operations, Petroleum Business, Petroleum Economics, Field Development Planning, Gas Lift Valve Changing & Installation, Well Completion Design & Operation, Well Surveillance, Well Testing, Well Stimulation & Control and Workover Planning, Completions & Workover, Rig Sizing, Hole Cleaning & Logging, Well Completion, Servicing & Work-Over Operations, Practical Reservoir Wellhead Engineering. X-mas Tree & Operations, Maintenance Testing, Advanced Petrophysics/Interpretation of Well Composite, Construction Integrity & Completion, Coiled Tubing Technology, Corrosion Control, Slickline, Wireline & Coil Tubing, Pipeline Pigging, Corrosion Monitoring, Cathodic Protection as well as Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), Gas Conditioning & Process Technology, Production Safety and Delusion of Asphalt. Currently, he is the Operations Consultant & the Technical Advisor at GEOTECH and an independent Drilling Operations Consultant of various engineering services providers to the international clients as he offers his expertise in many areas of the drilling & petroleum discipline and is well recognized & respected for his process and procedural expertise as well as ongoing participation, interest and experience in continuing to promote technology to producers around the world.

Throughout his long career life, Dr. Chris has worked for many international companies and has spent several years managing technically complex wellbore interventions in both drilling & servicing. He is a well-regarded for his process and procedural expertise. Further, he was the Operations Manager at ETP Crude Oil Pipeline Services where he was fully responsible for optimum operations of crude oil pipeline, workover and directional drilling, drilling rigs and equipment, drilling of various geothermal deep wells and exploration wells. Dr. Chris was the Drilling & Workover Manager & Superintendent for Kavala Oil wherein he was responsible for supervision of drilling operations and offshore exploration, quality control of performance of rigs, coiled tubing, crude oil transportation via pipeline and abandonment of well as per the API requirements. He had occupied various key positions as the Drilling Operations Consultant, Site Manager, Branch Manager, Senior Drilling & Workover Manager & Engineer, Drilling & Workover Engineer, Process Engineer, Operations Consultant and Technical Advisor in several petroleum companies responsible mainly on an offshore sour oil field (under water flood and gas lift) and a gas field. Further, Dr. Chris has been a Professor of the Oil Technology College.

Dr. Chris has PhD in Reservoir Engineering and a Master's degree in Drilling & Production Engineering from the Petrol-Gaze Din Ploiesti University. Further, he is a Certified Surfaced BOP Stack Supervisor of IWCF, a Certified Instructor/Trainer, a Certified Trainer/Assessor/Internal Verifier by the Institute of Leadership & Management (ILM) and has conducted numerous short courses, seminars and workshops and has published several technical books on Production Logging, Safety Drilling Rigs and Oil Reservoir.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures 20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies Simulators (Hardware & Software) & Videos 20%

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav 1: Sunday, 01st of February 2026

Duy 1.	Cultury, or orrestructy 2020
0730 - 0745	Registration & Coffee
0745 - 0800	Welcome & Introduction
0800 - 0815	PRE-TEST
	Course Overview & Objectives
0815 - 0845	Introduction to the Importance of Petroleum Project Economics & its Role in
	Decision-Making
	Historical Perspective
0845 - 0930	Overview of Petroleum Economics from the Past to Present, Major Events & their
	Implications
0930 - 0945	Break
	Basic Principles of Economics in Petroleum
0945 - 1130	Concepts of Supply & Demand, Price Elasticity & Economic Indicators Relevant to
	the Oil & Gas Industry
	Petroleum Fiscal Systems
1130 – 1230	Introduction to Tax Royalties, Production Sharing Agreements & Service
	Contracts
1230 - 1245	Break
	Time Value of Money
1245 - 1330	Understanding Discount Rates, Net Present Value (NPV) & the Significance of
	Future Cash Flows
	Key Performance Indicators
1330 - 1420	Overview of NPV, Internal Rate of Return (IRR), Payback Period & Profitability
	Index
1420 - 1430	Recap
1430	Lunch & End of Day One

Monday, 02nd of February 2026 Day 2:

Day Z.	monday, oz or rebruary 2020
0730 - 0830	Exploration Costs
	Costs Associated with Locating Reserves, including Seismic & Drilling Costs
0830 - 0930	Development Costs
	Expenditures Related to Preparing Reserves for Production
0930 - 0945	Break

0945 – 1115	Operating Costs
	Costs to Produce, Maintain & Transport Petroleum
1115 – 1230	Abandonment & Decommissioning Costs
	The Financial and Environmental Costs Associated with Closing a Project
1230 - 1245	Break
1245 – 1330	Price Forecasting
	Techniques & Challenges of Predicting Future Petroleum Prices
1330 - 1420	Break-even Analysis
	Determining the Minimum Oil or Gas Price Required for a Project to be
	Economically Viable
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3: Tuesday, 03rd of February 2026

Day 3.	ruesuay, 03 ° 01 February 2020
0730 - 0830	Introduction to Risk & Uncertainty
	Definitions, Distinctions & its Significance in Petroleum Projects
0830 - 0930	Quantitative Risk Analysis
	Techniques like Monte Carlo Simulation, Sensitivity Analysis & Decision Trees
0930 - 0945	Break
0045 1115	Qualitative Risk Analysis
0945 – 1115	SWOT Analysis, Expert Judgment & Scenario Planning
1115 – 1230	Mitigating Risks in Petroleum Projects
	Strategies to Minimize Exposure to Price Volatility, Geopolitical Risks, Etc.
1230 – 1245	Break
1245 – 1330	Portfolio Management in Petroleum
	Diversifying Assets & Projects to Minimize Risk & Maximize Return
1330 - 1420	Contractual & Fiscal Risks
	Addressing Risks Associated with Contracts, Agreements & Changes in
	Government Policies
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4: Wednesday, 04th of February 2026

Day 4.	Wednesday, 04 Of February 2020
0730 - 0830	Financing Petroleum Projects
	Understanding Equity, Debt & Project Finance
0830 - 0930	Environmental, Social & Governance (ESG) Factors
	Importance of ESG in Project Decision-Making & Financial Performance
0930 - 0945	Break
0045 1115	Economic Evaluation of Unconventional Resources
0945 – 1115	Economics of Shale Oil, Shale Gas & Other Unconventional Resources
1115 – 1230	Strategic Planning in Petroleum
1113 - 1230	Long-Term Planning, Integration of Economic Evaluation into Corporate Strategy
1230 - 1245	Break
1245 – 1330	Global Energy Transition & its Impacts
	Shift to Renewables & the Role of Oil & Gas in the Future Energy Mix
1330 - 1420	Digitalization & its Economic Impact
	Role of Technologies like AI, IoT & Data Analytics in Improving Project Economics
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5:	Thursday,	05th of	February	/ 2026
--------	-----------	---------	----------	--------

Duy U.	Thaisday, oo of i coldary 2020
0730 – 0830	Field Development Decision Case Study
	An In-Depth Look at the Economic Factors Behind a Decision to Develop a Field
0830 - 0930	Economic Evaluation of a Mega Project
	Detailed Financial & Risk Analysis of a Large-Scale Petroleum Project
0930 - 0945	Break
0045 1120	Downstream Project Economics Case Study
0945 – 1130	Economics of Refining, Transportation & Retailing
1130 – 1230	Petroleum Project in a Politically Unstable Region
1130 - 1230	Addressing Geopolitical Risks & Strategies to Manage them
1230 – 1245	Break
	Innovation & Technology's Impact on Project Economics
1245 - 1315	Case Study of a Project that Significantly Benefited from a Technological
	Breakthrough
	Wrap-up & Future Trends
1315 - 1345	Summarizing Key Learnings & Discussing Upcoming Trends & Challenges in
	Petroleum Project Economics
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

