

COURSE OVERVIEW PE0221 Operation of Process Equipment

Fired Heaters, Air Coolers, Heat Exchangers, Pumps, Compressors, Crude Desalter, Pressure Vessels & Valves

Course Title

Operation of Process Equipment: Fired Heaters, Air Coolers, Heat Exchangers, Pumps, Compressors, Crude Desalter, Pressure Vessels & Valves

Course Date/Venue

March 10-14, 2025/Hampstead Meeting Room, London Marriott Hotel Regents Park, London, United Kingdom

(30 PDHs)

Course Reference

PE0221

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

The course is designed to provide delegates with a detailed and up-to-date overview on the operation of the hydrocarbon process equipment that includes fired heaters, air coolers, heat exchangers, pumps, compressors, crude desalter, pressure vessels and valves.

It covers the characteristics of crude oil and function of chemicals used in the process such as composition of petroleum, hydrocarbon properties, salt concentration and emulsions.

At the completion of the course, participants will be able to apply oil treating; dehydration and desalting; process and equipment operations; and employ the sequence of desalter plant start-up.

The course will also cover the different types and function of direct fired heaters; safety aspects; air coolers; heat exchangers; pumps; compressors; process vessels; valves; and troubleshooting of different equipment and processes.

PE0221-03-25|Rev.467|09 January 2025

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply proper techniques and procedures on the operation of the hydrocarbon process equipment such as fired heaters, air coolers, heat exchangers, pumps, compressors, crude desalter, pressure vessels and valves
- Enumerate the characteristics of crude oil and identify the function of chemicals used in the process such as composition of petroleum, hydrocarbon properties, salt concentration and emulsions
- Discuss oil treating, dehydration and desalting including the process and equipment operations
- Employ the sequence of desalter plant start-up and identify the different types and function of direct fired heaters including the safety aspects
- Differentiate the various types of air coolers, heat exchangers, pumps and compressors
- Describe the types and functions of process vessels and valves including the troubleshooting of different equipment and processes

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all operational aspects of the hydrocarbon process equipment for engineers and other technical staff who are involved in the operation and troubleshooting of various process equipment including fired heaters, air coolers, heat exchangers, pumps, compressors, crude desalter, pressure vessels and valves. The course is also beneficial for design engineers and maintenance staff.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0221 - Page 2 of 7 PE0221-03-25|Rev.467|09 January 2025

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:

*** * BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• ACCREDITED

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Fee

US\$ 8,800 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

In addition to the Course Manual, participants will receive an e-book "Operator's Guide to Rotating Equipment: An Introduction to Rotating Equipment Construction, Operating Principles, Troubleshooting and Best Practices", published by AuthorHouse.

PE0221 - Page 3 of 7

PE0221-03-25|Rev.467|09 January 2025

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Pete Du Plessis, MSc, BSc, is a Senior Process & Safety Engineer within the Oil, Gas and Petrochemical industries. His expertise widely covers in the areas of Process Plant Troubleshooting, Engineering Problem Solving, Process Plant Optimization Technology & Continuous Improvement, Refinery Operational Planning & Profitability, Process Plant Rehabilitation, Revamping &

Debottlenecking, Chemical Plants Troubleshooting, Flare Relief Systems, Risk Assessment within Production Operation, Hazard Identification, Safety Auditing, Site Inspection, Quantified Risk Assessment (QRA), Process Hazard Analysis (PHA), Process Safety Management (PSM), HAZOP Studies & Leadership, FMEA, Waste Management, Industrial Effluents, Chemical Handling, Emergency Response Services, HAZCOM, HAZWOPER and HAZMAT with over 30 years of practical experience in the process industry. His wide experience also includes Environmental Management (ISO 14001), Safety Management (OHSAS 18001), Quality Management (ISO 9001).

While Mr. Du Plessis has been very active in the process industry he has likewise headed Consultancy projects for major **petrochemical companies**. In all his projects, he utilizes a systems approach which includes **risk management**, **process safety**, health & environmental management, human behaviour and quality management. Furthermore, he has come to share his expertise through the **numerous international trainings** he has held on **PHA**, **HAZOP**, **Risk Assessment**, Handling **Hazardous Materials** & Chemicals, Petroleum Products Handling & Transportation. Moreover, he completed various assignments as a consultant, trainer, facilitator, auditor & designer and conducted numerous licensed international Safety, Technology and Auditing Awareness & Implementing training courses including IMS, ISO 9001, ISO 14001, ISO 27001, ISO 17799, OHSAS 18001 audits & assessments. With his accomplishments and achievements, he had been a **Safety Superintendent**, **Senior Safety Official** and **Senior Process Controller** for several international petrochemical companies.

Mr. Plessis has **Bachelor** degree with **Honours** in **Industrial Engineering** & **Management**. Further, he has gained **Diploma** in **Quality & Production Management**. He is also a **Certified Assessor** & **Moderator** with the Manufacturing, Engineering & Related Services Education and Training Authority (MERSETA), a **Certified Trainer/Assessor** by the **Institute of Leadership & Management** (**ILM**) and a **Certified Instructor/Trainer** by the APICS. He has further delivered numerous trainings, courses, seminars, conferences and workshops internationally.

PE0221 - Page 4 of 7

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 10 th of March 2025
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Characteristics of Crude Oil
	Composition of Petroleum • Hydrocarbon Gases Properties
0930 - 0945	Break
	Characteristics of Crude Oil (cont'd)
0945 - 1100	Salts Concentration • Emulsions • Function of Chemicals Used in the
	Process
	Oil Treating, Dehydration & Desalting
1100 1230	<i>Emulsion Formation & Breaking</i> • <i>Vertical & Horizontal Theater Operation</i>
1100 - 1250	Electrostatic Theatre Design/Operation The Desalting
	Process/Equipment • Emulsion Treating
1230 - 1245	Break
1245 - 1420	Oil Treating, Dehydration & Desalting (cont'd)
	Separators – Free Water Knockout • Hetear Theatres – Other Treating
	Methods • Chemical – Electrical – Crude Oil Coolers (Heat Exchangers) •
	Control Valves Principles • Pumps Operation • Air Compressor Operation
1420 - 1430	Recap
1430	Lunch & End of Day One
Day 2.	Tuesday, 11 th of March 2025
Duy 2.	

Sequence of Desalter Plant Start-up
Break
Sequence of Desalter Plant Start-up (cont'd)
Direct-Fired Heaters
Design Considerations – Process & Combustion
Break
Direct-Fired Heaters (cont'd)
Control System
Recap
Lunch & End of Day Two

Day 3:	Wednesday, 12 th of March 2025
0730 – 0930	Air Coolers
	<i>Types – Forced and Induced Air • Key Operational Considerations</i>
0930 - 0945	Break
0945 – 1100	Air Coolers (cont'd)
	Air vs Water Cooling • Troubleshooting
1100 – 1230	Heat Exchangers
	Types • Shell-and-Tube
1230 - 1245	Break
1245 – 1420	Heat Exchangers (cont'd)
	Heat Transfer Relation
1420 - 1430	Recap
1430	Lunch & End of Day Three

PE0221 - Page 5 of 7 PE0221-03-25|Rev.467|09 January 2025

Day 4:	Thursday, 13 th of March 2025
0730 – 0930	Pumps Development of Static and Dynamic Head in the Operating Volume of Pumps for Efficiency and Control Operation • The Affinity Laws as Tools for Efficient Operation • Pump Auxiliaries
0930 - 0945	Break
0945 – 1100	Pumps (cont'd)Wear Components• Canned Motor and Magnetic Drive PumpsSpeed/Low Flow Pumps• Servicing and Condition Monitoring
1100 – 1230	<i>Compressors</i> <i>Types, Styles and Configurations of Centrifugal and Axial Compressors</i> • <i>Construction Features</i> • <i>Mode of Operation</i>
1230 - 1245	Break
1245 – 1420	<i>Compressors (cont'd)</i> <i>Compressor Auxiliaries and Support Systems</i> • <i>Analyse Operating Curves</i> <i>for Surge, Stall and Choke</i> • <i>Define Appropriate Equipment for Safe</i> <i>Operation</i>
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5:	Friday, 14 th of March 2025
0730 - 0930	Process Vessels
	<i>Types and Functions</i> • <i>Safety Aspects</i>
0930 - 0945	Break
	Valves
0945 – 1100	Value Theory • Value Types • Applications • Function • Operation •
	Troubleshooting
1100 – 1230	Troubleshooting of Different Equipment & Processes
1230 - 1245	Break
1245 – 1345	Troubleshooting of Different Equipment & Processes (cont'd)
1345 – 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

PE0221 - Page 6 of 7

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Book(s)

As part of the course kit, the following e-book will be given to all participants:

OPERATOR'S GUIDE ^{to} Rotating Equipment An introduction to rotating equipment construction, operating principles, troubleshooting, and best practices	Title : Operator's Guide to Rotating Equipment: An Introduction to Rotating Equipment Construction, Operating Principles, Troubleshooting and Best Practices
	ISBN : 978-1-49690-868-1
	Robert Perez
	Publisher : AuthorHouse
Julien LeBleu, Jr. and Robert Perez	

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari@haward.org

PE0221 - Page 7 of 7

