

COURSE OVERVIEW PE1042 CCR Platforming Process - Advanced

Course Title

CCR Platforming Process - Advanced

Course Date/Venue

- Session 1: July 13-17, 2025/Crowne Meeting Room, Crowne Plaza Al Khobar, an IHG Hotel, Al Khobar, KSA
- Session 2: October 26-30, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

O CEUS

(30 PDHs) AWARD

Course Reference PE1042

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of Continuous Catalyst Regeneration (CCR) Platforming - Process Standard. It covers the platforming process, basic principles of catalytic reforming, continuous catalyst regeneration (CCR) system and catalyst deactivation mechanisms; the catalyst performance and regeneration, process flow diagram (PFD) for CCR platforming and design of the CCR reactor; the reactor operating conditions, regeneration process and catalyst bed management; the heat and mass balance in CCR and troubleshooting reactor issues; and the control systems in CCR platforming, automation of CCR operations, advanced process control (APC) for CCR and instrumentation for monitoring and control.

During this interactive course, participants will learn the CCR process optimization, safety and environmental considerations; advanced catalyst regeneration techniques, signs of catalyst failure and handling deactivation issues; analyzing catalyst behavior over time, catalyst reactivation methods and reducing energy consumption in the reactor; the energy recovery methods, heat integration in the platforming process and energy balance in CCR operations; diagnosing operational issues in reactors and regenerators; the common faults in heat exchangers and reactors, cooling and heating issues and managing off-spec product quality; controlling octane numbers and managing aromatics and hydrogen content; and identifying impurities in platforming

PE1042 - Page 1 of 8

products and the product specification monitoring.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on continuous catalyst regeneration (CCR) platforming process standard
- Discuss platforming process, basic principles of catalytic reforming, continuous catalyst regeneration (CCR) system and catalyst deactivation mechanisms
- Illustrate catalyst performance and regeneration, process flow diagram (PFD) for CCR platforming and design of the CCR reactor
- Recognize reactor operating conditions and the regeneration process as well as apply catalyst bed management
- Identify heat and mass balance in CCR, troubleshoot reactor issues and discuss control systems in CCR platforming
- Employ automation of CCR operations, advanced process control (APC) for CCR and instrumentation for monitoring and control
- Carryout CCR process optimization, safety and environmental considerations and advanced catalyst regeneration techniques
- Identify signs of catalyst failure, handle deactivation issues, analyze catalyst behavior over time and implement catalyst reactivation methods
- Reduce energy consumption in the reactor and apply energy recovery methods, heat integration in the platforming process and energy balance in CCR operations
- Diagnose operational issues in reactors and regenerators, identify common faults in heat exchangers and reactors, address cooling and heating issues and manage offspec product quality
- Control octane numbers, manage aromatics and hydrogen content, identify impurities in platforming products and apply product specification monitoring

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of continuous catalyst regeneration (CCR) platforming - process standard for process engineers, CCR unit operators, shift supervisors & operations supervisors, maintenance and reliability engineers, technical services & support staff, HSE personnel and project engineers.

PE1042 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE1042 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Robert Harvey, MSc (Cum Laude), BSc is a Senior Chemical Engineer with over 30 years of in-depth industrial experience within the Oil & Gas, Refinery, Petrochemical, Mining and Power industries. His expertise widely covers in the areas of Fertilizer Manufacturing Process Technology, Fertilizer Storage Management (Ammonia & Urea), Petrochemical & Fertilizer Plants, Nitrogen Fertilizer Production, Petroleum Industry Process Engineering, Process Equipment Design & Troubleshooting, Process Equipment & Piping Systems, Fertilizer Manufacturing Process Technology, Production

Management, Process Plant Optimization & Continuous Improvement, Revamping & Debottlenecking, Pressure Vessel Operation, Heat Mass Balance, Distillation-Column Operation, & Troubleshooting, Production Process Optimization, Debottlenecking, Unit Performance Optimization, Process Analyzers, Real Time Online Optimization, Operations Planning Optimization, Engineering Problem Solving, Bag Filters Operation & Maintenance, Process Equipment Design, Chemical Reaction Engineering Application, Phosphatic Industry, Diammonium Phosphate, Monoammonium Phosphate, NPK, Troubleshooting Improvement, **Production** Management, **Distillation-Column** Operation & Troubleshooting, Vinyl Chloride Monomer (VCM) Manufacturing & Process Troubleshooting, Monomer Handling Safety, Cement Manufacturing Process Technology & Standards, Complex Operational Troubleshooting, Incident Root Cause Analysis & Corrective Action, Process Equipment & Piping System, Fertilizer Manufacturing, Process Plant Optimization & Continuous Improvement, Process Plant Performance & Efficiency, Continuous Improvement & Benchmarking, Energy Efficiency for Process Plants, Pressure Vessel Operation, Reactors & Storage Tanks, Dehydrating Columns, Heat & Material Balance, Troubleshooting Process Operations, Modern Aluminium Production Processes, Cement Kiln Process, Process Engineer Calculations, Steel Making Process, P&ID Reading & Interpretation, Detailed Engineering Design, Process Diagrams Review, Process Hazard Analysis (PHA), HAZOP Leadership, Project HSE Review (PHSER), Safe Handling of Propylene Oxide & Ethylene Oxide, Safety in Process & Industrial Plants, Environmental Impact Assessment (EIA) and Effective Risk Assessment & HAZOP Studies. Further, he is also well versed in Feasibility Studies Analysis & Evaluation, Project Gate System Procedures, Process Mapping, Change Management Skills, Change Management Strategy, Strategical Process Control in Process Industry, Developing Commercial Contracts, Project Management Skills, Project Scheduling & Cost Control, FIDIC & Other Model Contracts, EPC & EPCM Contracts, Knowledge Management, Job Evaluation, Creative Problems Solving & Innovation Skills, Problem Solving & Decision Making, Strategic Planning & Creative Thinking and Mind Mapping.

During his career life, Mr. Harvey has gained his practical and field experience through his various significant positions and dedication as the **Commercial Director**, **Manufacturing Director**, **Chief Operating Officer**, **Head Projects Division**, **Project Leader**, **Lead Technical Advisor/Consultant** and **Project Consultant** to various international companies such as the Trade and Industrial Policy Strategies (TIPS), PGBI Johannesburg, IDC Green Industries SBU/Arengo 316 Pty Ltd, Ferrum Crescent Limited, CEF Limited, Rio Tinto Alcan, Industrial Development Corporation of SA (IDC) and AECI Limited.

Mr. Harvey has **Master's** (**Cum Laude**) and **Bachelor's** degrees in **Chemical Engineering**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management** (**ILM**) and has delivered various trainings, seminars, conferences, workshops and courses globally.

PE1042 - Page 4 of 8

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of the Platforming Process History and Development of Platforming Processes • Importance in the Refining Industry • Key Chemical Reactions Involved • Types of Platforming Processes
0930 - 0945	Break
0945 – 1030	Basic Principles of Catalytic Reforming Definition and Purpose • Catalyst Roles and Functions • Types of Reforming Catalysts • Reaction Kinetics and Thermodynamics
1030 - 1215	Understanding the Continuous Catalyst Regeneration (CCR) System Definition of CCR Platforming • Benefits of Continuous Regeneration • Components of a CCR System • Comparison Between Semi-Regenerative and Continuous Systems
1215 - 1230	Break
1230 - 1330	Catalyst Deactivation Mechanisms Poisoning • Sintering • Coking • Leaching
1330 - 1420	Basics of Catalyst Performance & Regeneration Catalyst Life Cycle • Regeneration Methods • Importance of Regular Catalyst Monitoring • Impact of Deactivation on Performance
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 1

PE1042 - Page 5 of 8

Day 2	
0730 – 0830	Process Flow Diagram (PFD) for CCR Platforming Layout and Components of a CCR Unit • Key Equipment in the PFD • Stream and Flow Directions • Understanding Utility Systems Integration
0830 - 0930	Design of the CCR Reactor Types of CCR Reactors • Reactor Internals Design • Catalyst Bed Design • Heat Management in the Reactor
0930 - 0945	Break
0945 – 1100	Reactor Operating Conditions Temperature, Pressure, and Flow Rate Specifications • Effect of Operating Conditions on Catalyst Life • Control of Reaction Parameters • Optimization Strategies for Reactor Conditions
1100 – 1215	<i>The Regeneration Process</i> <i>Regeneration Cycle Design</i> • <i>Oxygenation of Catalyst</i> • <i>Regeneration Reaction</i> <i>Kinetics</i> • <i>Catalyst Regeneration Conditions</i>
1215 – 1230	Break
1230 - 1420	Catalyst Bed Management Bed Height and Catalyst Loading • Fluidization and Flow Distribution • In- Situ Catalyst Activity Monitoring • Handling Catalyst During Shutdowns
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

<u></u>	
0730 - 0830	Heat & Mass Balance in CCR Calculation of Heat Generation and Removal • Balancing Mass Flow in Reactor and Regenerator • Effects of Heat Imbalance on Catalyst Activity • Understanding Thermal Management in CCR
0830 – 0930	Troubleshooting Reactor Issues Common Problems in Reactor Performance • Catalyst Poisoning Signs and Solutions • Addressing Pressure Drop Issues • Managing Fouling in Reactors
0930 - 0945	Break
0945 – 1100	<i>Control Systems in CCR Platforming</i> <i>Basic Control Systems Overview</i> • <i>Role of Distributed Control System (DCS)</i> • <i>Temperature, Pressure, and Flow Control</i> • <i>Reactor and Regenerator Control</i> <i>Schemes</i>
1100 – 1215	Automation of CCR Operations Benefits of Automation in CCR Operations • Automation Strategies for Catalyst Regeneration • Real-Time Data Analysis and Decision Making • Automation Troubleshooting
1215 – 1230	Break
1230 - 1420	<i>Advanced Process Control (APC) for CCR</i> <i>Principles of APC in Platforming Units</i> • <i>Feedback and Feedforward Control</i> <i>Loops</i> • <i>Optimization Algorithms</i> • <i>Case Studies on APC Success</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

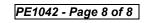
PE1042 - Page 6 of 8 PE1042-07-25|Rev.01|29 May 2025

0730 - 0830	Instrumentation for Monitoring & Control
	Key Instruments Used in CCR Systems • Pressure, Temperature, and Flow
	Measurement Devices • Catalyst Activity Monitoring Instruments • Online
	Analyzers and Diagnostics
0830 - 0930	CCR Process Optimization
	Optimizing Catalyst Regeneration Cycles • Optimizing Product Yield and
	Quality • Minimizing Downtime and Maintenance • Improving Overal
	Process Efficiency
0930 - 0945	Break
	Safety & Environmental Considerations
0945 - 1100	Safety Hazards in CCR Platforming • Environmental Regulations and
0545 - 1100	Compliance • Managing Emissions and Waste Products • Safety Features in
	CCR Operations
1100 - 1215	Advanced Catalyst Regeneration Techniques
	High-Temperature Regeneration • Advanced Coke Removal Methods • Use o
	Additives in Regeneration • Regeneration Cycle Extensions
1215 – 1230	Break
1230 - 1420	Troubleshooting Catalyst Issues
	Identifying Signs of Catalyst Failure • Techniques to Handle Deactivation
	Issues • Analyzing Catalyst Behavior Over Time • Implementing Catalys
	Reactivation Methods
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

Duyo	
0730 – 0930	<i>Energy Efficiency in CCR Platforming</i> <i>Reducing Energy Consumption in the Reactor</i> • <i>Energy Recovery Methods</i> • <i>Heat Integration in the Platforming Process</i> • <i>Energy Balance in CCR</i> <i>Operations</i>
0930 - 0945	Break
0945 - 1100	<i>Advanced Process Troubleshooting</i> <i>Diagnosing Operational Issues in Reactors and Regenerators</i> • <i>Common Faults</i> <i>in Heat Exchangers and Reactors</i> • <i>Strategies to Address Cooling and Heating</i> <i>Issues</i> • <i>Managing Off-Spec Product Quality</i>
1100 - 1215	Quality Control & Product Specifications Controlling Octane Numbers • Managing Aromatics and Hydrogen Content • Impurities in Platforming Products • Product Specification Monitoring
1215 – 1230	Break
1230 - 1330	Future Trends in CCR Platforming Innovations in Catalyst Technology • Emerging Trends in Process Automation • Future Developments in Energy Efficiency • Sustainability in CCR Operations
1330 - 1345	<i>Course Conclusion</i> <i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i> <i>Course Topics that were Covered During the Course</i>
1345 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course
	PE1042 - Page 7 of 8

Practical Sessions


This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

