

COURSE OVERVIEW TM1112 Measuring, Assessing & Managing Risk in Energy Projects

Course Title

Measuring, Assessing & Managing Risk in Energy Projects

Course Date/Venu

October 12-16, 2025/Meeting Plus 9, City Centre Rotana, Doha, Qatar

(30 PDHs)

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date knowledge of Measuring, Assessing & Managing Risk in Energy Projects. It covers the risk management in energy projects, energy project lifecycle and risk exposure and risk management frameworks and standards; the stakeholders and risk ownership, risk taxonomy in energy projects and tools for risk identification; the qualitative assessment, quantitative risk risk assessment, scenario planning and stress testing and cost and schedule risk assessment; the technical and operational risk modeling, environmental and social impact risks, risk response planning, risk allocation and contractual clauses and insurance and risk transfer mechanisms.

During the course, participants will be able to monitor risk performance, controls and governance, compliance and risk auditing, crisis management and business continuity; integrating risk into strategic project decisions and portfolio risk management for energy companies, financial and market risk in energy projects and risk-based decision-making and optimization; lender the and investor risk requirements, regulatory and policy risk management and tools and software for risk management; building a project risk register and risk management culture; and the energy transition and emerging risks.

TM1112- Page 1 of 8

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on measuring, assessing and managing risk in energy projects
- Discuss risk management in energy projects, energy project lifecycle and risk exposure and risk management frameworks and standards
- Identify stakeholders and risk ownership as well as recognize risk taxonomy in energy projects and tools for risk identification
- Explain qualitative risk assessment, quantitative risk assessment, scenario planning and stress testing and cost and schedule risk assessment
- Analyze technical and operational risk modeling, environmental and social impact risks, risk response planning, risk allocation and contractual clauses and insurance and risk transfer mechanisms
- Monitor risk controls and performance and explain governance, compliance and risk auditing, crisis management and business continuity
- Integrate risk into strategic project decisions and discuss portfolio risk management for energy companies, financial and market risk in energy projects and risk-based decision-making and optimization
- Identify lender and investor risk requirements, regulatory and policy risk management and tools and software for risk management
- Build a project risk register and risk management culture as well as discuss energy transition and emerging risks

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of measuring, assessing and managing risk in energy projects for project managers and engineers, risk management professionals, finance and investment analysts, energy sector executives and decision-makers, regulatory and compliance officers, consultants and advisors and those who involved in planning, financing, executing, or overseeing energy-related projects.

<u>Course Fee</u>

US\$ 6,000 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

TM1112- Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

TM1112- Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Dimitry Rovas, CEng, MSc, PMI-PMP, SMRP-CMRP is a Senior Management Consultant & Maintenance Engineer with extensive industrial experience in Oil, Gas, Power and Utilities industries. His expertise includes Leadership & Change Management, Leadership & Mentoring, Supply Chain Management, Strategic Supply Chain Management, Supply Chain Advanced, Time Management, Performance Management, Strategic Planning & Analysis and Communication & Reporting Skills, Talent Management, Presentation Skills, Negotiation Skills, Interpersonal Skills, Communication Skills, Collaboration Skills, Developing Effective Partnership, Developing & Managing Budget,

Technical Design & Development, Analytical & Troubleshooting Techniques, Interpersonal Skills, Project Management, Construction Management, Project Management Planning & Control Techniques, Project Risk Management, Quality Management, Project Acceleration Techniques, Scope Control Management, Contract Management, Asset Management, Procurement & Purchasing Management, Warehousing, Quality Management System (QMS) and Business Management. Further, he is also well-versed in Maintenance Optimization & Best Practices, Maintenance Auditing & Benchmarking, Reliability Management, Reliability Centered Maintenance Principles & Application, Machinery Lubrication, Maintenance Planning & Scheduling, Coupling & Shaft Alignment Techniques, Maintenance Management & Cost Control, Preventive & Predictive Maintenance, Effective Reliability Maintenance & Superior Maintenance Strategies, Integrity & Asset Management, Reliability, Availability & Maintainability (RAM), Total Plant Reliability Centered Maintenance, Turnaround & Outages, Process Plant Shutdown, Turnaround & Troubleshooting, Shutdown & Turnaround Management, Integrity & Asset Management, Maintenance Management Best Practices, Material Cataloguing, Maintenance Planning & Scheduling, Effective Reliability Maintenance, Maintenance Contracting & Outsourcing, Maint enance Inventory, Materials Management, Mechanical & Rotating Equipment Troubleshooting & Maintenance, Rotating Equipment Reliability Optimization, Computerized Maintenance Management System (CMMS), Material Cataloguing & Specifications, Rotating Equipment Maintenance & Troubleshooting, Pump Technology, Pump Selection & Installation, Reciprocating & Centrifugal Compressors, Energy Conservation, Electricity Distribution Systems, Energy Saving, Combined Cycle Power Plant, Gas & Steam Turbines, Heat Transfer, Machine Design, Fluid Mechanics, Heating & Cooling Systems, Heat Insulation Systems and Heat Exchanger & Cooling Towers. He was the Project Manager wherein he was managing, directing and controlling all activities and functions associated with the domestic heating/cooling facilities projects.

During his life career, Mr. Rovas has gained his practical and field experience through his various significant positions and dedication as the **EPC Project Manager**, **Field Engineer**, **Preventive Maintenance Engineer**, **Researcher**, **Instructor/Trainer**, **Telecom Consultant** and **Consultant** from various companies such as the Podaras Engineering Studies, Metka and Diadikasia, S.A., **Hellenic Petroleum Oil Refinery** and COSMOTE.

Mr. Rovas is a **Chartered Engineer** of the **Technical Chamber** of **Greece**. Further, he has **Master's** degree in **Mechanical Engineering** and **Energy Production & Management** from the **National Technical University of Athens**. Moreover, he is a **Certified Instructor/Trainer**, a **Certified Maintenance and Reliability Professional (CMRP)** from the Society of Maintenance & Reliability Professionals (SMRP), a **Certified Project Management Professional (PMP)**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management** (**ILM**) and a **Certified Six Sigma Black Belt**. He is an active member of Project Management Institute (**PMI**), Technical Chamber of Greece and Body of Certified Energy Auditors and has further delivered numerous trainings, seminars, courses, workshops and conferences internationally.

Training Methodology

TM1112- Page 4 of 8

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 12 th of October 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0930	<i>Introduction to Risk Management in Energy Projects</i> Definition and Types of Risk (Strategic, Technical, Financial, HSE) • Importance of Risk Management Across the Project Lifecycle • Risk versus Uncertainty in Energy Investments • Energy Sector-Specific Risk Examples (Oil Price Volatility, Regulatory Shifts)
0930 - 0945	Break
0945 – 1030	<i>Energy Project Lifecycle & Risk Exposure</i> <i>Phases: Conceptual, Feasibility, Design, Execution, Operation, Decommissioning</i> • <i>Risk Drivers in Each Phase</i> • <i>Risk Exposure During Transitions Between Project</i> <i>Stages</i> • <i>Stage-Gate Risk Considerations</i>
1030 - 1130	Risk Management Frameworks & Standards ISO 31000 and its Application • COSO ERM Framework • Project Management Institute (PMI) Risk Process • Integration with Corporate Governance and Compliance
1130 – 1215	<i>Identifying Stakeholders & Risk Ownership</i> Internal versus External Stakeholders • Role of Sponsors, Regulators, Community and Lenders • Assigning Ownership and Accountability • Communication and Reporting Strategies
1215 – 1230	Break
1230 - 1330	Risk Taxonomy in Energy Projects Technical, Operational, Financial, Commercial, Environmental and Geopolitical Risks • Legal and Contractual Risks • Health, Safety and Security (HSE) Risks • Climate and Sustainability-Related Risks
1330 - 1420	Tools for Risk IdentificationBrainstorming and Expert Judgment • Checklists and Lessons Learned Databases •SWOT and PESTLE Analysis • HAZID, HAZOP and What-If Analysis
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

TM1112- Page 5 of 8 TM1112-10-25|Rev.00|10 July 2025

Day 2:	Monday, 13 th of October 2025
0730 - 0830	Qualitative Risk Assessment
	Likelihood and Consequence Matrices • Risk Ranking and Prioritization • Color-
	Coded Risk Heat Maps • Confidence Levels and Assumptions
	Quantitative Risk Assessment
0830 - 0930	Probability Distributions and Expected Values • Sensitivity Analysis • Monte
	Carlo Simulation Basics • Risk-Adjusted NPV and IRR
0930 - 0945	Break
	Scenario Planning & Stress Testing
0045 1100	Defining High-Impact, Low-Probability Scenarios • Scenario Analysis versus
0945 - 1100	Forecasting • Energy Price and Regulatory Stress Testing • Application to Power
	Purchase Agreements and Upstream Economics
	Cost & Schedule Risk Assessment
1100 – 1215	Contingency Estimation • Risk Registers for Cost Overruns and Delays • Critical
	Path and Float Risk Identification • Use of PERT and Three-Point Estimation
1215 – 1230	Break
	Technical & Operational Risk Modeling
1230 1330	Equipment Failure and Reliability Risk • Technology Maturity and Integration
1250 - 1550	Risk • Interface Risks Across Contractors and Packages • Control System and
	Cybersecurity Vulnerabilities
	Environmental & Social Impact Risks
1330 - 1420	ESG-Related Risk Evaluation • Impact Assessment Methodologies • Reputation
	and Community Relations Risk • Permitting and Compliance Challenges
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Dav 3:

Tuesday, 14th of October 2025

<u>_ uj vi</u>	
0730 - 0830	Risk Response Planning Risk Avoidance, Reduction, Transfer and Acceptance • Designing Layered Mitigation Strategies • Residual Risk Evaluation • Response Plan Documentation and Change Control
0830 - 0930	Risk Allocation & Contractual Clauses EPC, BOOT and PPP Risk Allocation Models • Force Majeure, Liquidated Damages and Indemnities • Risk-Sharing Models with Joint Ventures or Partners • Clauses for Performance and Availability Guarantees
0930 - 0945	Break
0945 – 1100	<i>Insurance & Risk Transfer Mechanisms</i> Role of Insurance in Energy Risk Management • Types of Coverage: CAR, EAR, Business Interruption, Liability • Captive Insurance and Reinsurance • Claims Management and Exclusions
1100 – 1215	Risk Controls & Performance Monitoring Leading versus Lagging Risk Indicators • Control Plans and Checklists • Performance Monitoring Systems (SCADA, EMS, ERP) • KPIs for Risk Management Effectiveness
1215 – 1230	Break
1230 – 1330	<i>Governance, Compliance & Risk Auditing</i> <i>Integrating Risk into Project Governance</i> • <i>Compliance with Local and</i> <i>International Standards</i> • <i>Internal Audit of Risk Controls</i> • <i>Risk Assurance</i> <i>Reviews and Third-Party Audits</i>
1330 - 1420	Crisis Management & Business Continuity

TM1112- Page 6 of 8 TM1112-10-25|Rev.00|10 July 2025

	Emergency Response Planning • Continuity Planning for Energy Assets •
	Simulation and Drill Exercises • Integration with Cybersecurity and IT Resilience
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	1000000
1430	Lunch & End of Day Three

Day 4:	Wednesday, 15 th of October 2025
0730 - 0830	Integrating Risk into Strategic Project Decisions
	Strategic Risk Appetite and Tolerance • Balancing Risk and Opportunity • Capital
	Allocation Under Uncertainty • Energy Transition and Low-Carbon Risks
	Portfolio Risk Management for Energy Companies
0830 - 0930	Diversification of Assets and Geographies • Correlation and Risk Aggregation •
	Enterprise-Level Risk Reporting • Use of Dashboards and Risk Heat Maps
0930 - 0945	Break
	Financial & Market Risk in Energy Projects
0945 1100	Interest Rate, Inflation and Exchange Rate Risks • Commodity Price Risk (Oil,
0545 - 1100	Gas, Electricity) • Hedging Strategies and Instruments • Energy Trading and
	Price Exposure Management
	Risk-Based Decision-Making & Optimization
1100 - 1215	Decision Trees and Expected Monetary Value (EMV) • Real Options Analysis in
1100 - 1215	Project Evaluation • Trade-Off Analysis (Cost versus Risk versus Performance) •
	Multi-Criteria Decision Analysis (MCDA)
1215 - 1230	Break
	Lender & Investor Risk Requirements
1230 - 1330	<i>Risk Perception by Financiers and Insurers</i> • <i>Risk Covenants in Loan Agreements</i>
1250 - 1550	• Project Finance and Bankability Assessments • Transparency and Reporting for
	ESG Risks
	Regulatory & Policy Risk Management
1330 - 1420	Adapting to Evolving Energy Regulations • Permitting and Environmental
	Approval Risks • Carbon Pricing and Emissions Regulation • International
	Frameworks: Paris Agreement, SDGs
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	<i>10pics that were Discussed 10day and Advise Them of the Topics to be Discussed</i>
1420	
1430	Lunch & Ena of Day Four

Day 5:	Thursday, 16 th of October 2025
0730 – 0830	Case Studies in Oil, Gas & Renewable Energy
	Offshore Platform Risk Assessment • Solar and Wind Energy Project Risk
	Mitigation • LNG Terminal Schedule and Cost Risk Control • Lessons Learned
	from Nuclear and Hydropower Projects
0830 - 0930	Tools & Software for Risk Management
	Primavera Risk Analysis • Palisade @Risk and Crystal Ball • Bowtie XP for HSE
	Risk Visualization • ERP Integration with SAP Risk Modules
0930 - 0945	Break
0945 - 1030	Building a Project Risk Register

TM1112- Page 7 of 8 TM1112-10-25|Rev.00|10 July 2025

	Developing a Risk Register Template • Linking Risks to WBS and Project
	Milestones • Review and Update Mechanisms • Lessons Learned for Future
	Projects
1030 - 1230	Building a Risk Management Culture
	Leadership and Tone from the Top • Training and Capacity Building • Aligning
	with Safety and Quality Programs • Embedding Risk into Daily Operations
1230 - 1245	Break
1245 - 1345	Energy Transition & Emerging Risks
	Climate-Related Financial Risk Disclosures (TCFD) • Decarbonization and
	Stranded Asset Risk • Technology Disruption in Renewables and Hydrogen • ESG
	and Stakeholder Activism in Project Approvals
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

<u>Practical Sessions</u> This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

TM1112- Page 8 of 8

