

COURSE OVERVIEW EE0904 Medium-Voltage Switchgear focused on Marine 6.6 kV Systems

Course Title

Medium-Voltage Switchgear focused on Marine 6.6 kV Systems

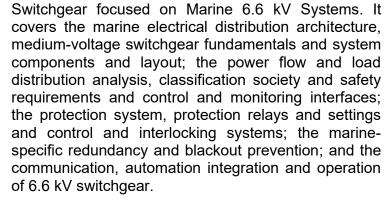
Course Date/Venue

November 23-27, 2025/TBA Meeting Room, The Tower Plaza Hotel, Dubai, UAE

Course Reference

EE0904

Course Duration/Credits


Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions where participants will be engaged in HV power switching and other working practices.

This course is designed to provide participants with a detailed and up-to-date overview of Medium-Voltage

Further, the course will also discuss the routine and preventive maintenance, safety and permit-to-work procedures and condition-based maintenance and diagnostics; the environmental challenges in marine installations, failure reporting and documentation and vacuum circuit breaker (VCB) principles; the testing and inspection procedures, commissioning and functional verification, troubleshooting VCBs and control circuits as well as relay and breaker interface testing; and the system reliability and redundancy concepts, power quality and harmonic control and classification and regulatory compliance.

During this interactive course, participants will learn the digital relays and self-diagnostic features and predictive maintenance using IoT sensors; the data analytics for switchgear health monitoring and integration into digital twins and remote dashboards; the arc-flash containment and post-incident recovery, emergency switching and isolation; the restoration sequences, load prioritization, black-start operation and synchronization; and the marine – specific protection schemes.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on medium-voltage switchgear focusing on marine 6.6 kV systems
- Discuss marine electrical distribution architecture, medium-voltage switchgear fundamentals and system components and layout
- Carryout power flow and load distribution analysis, classification society and safety requirements and control and monitoring interfaces
- Recognize protection system, protection relays and settings and control and interlocking systems
- Apply marine-specific redundancy and blackout prevention, communication and automation integration and operation of 6.6 kV switchgear
- Employ routine and preventive maintenance, safety and permit-to-work procedures and condition-based maintenance and diagnostics
- Review environmental challenges in marine installations, failure reporting and documentation and vacuum circuit breaker (VCB) principles
- Apply testing and inspection procedures, commissioning and functional verification, troubleshooting VCBs and control circuits as well as relay and breaker interface testing
- Explain system reliability and redundancy concepts, power quality and harmonic control and classification and regulatory compliance
- Identify digital relays and self-diagnostic features and apply predictive maintenance using IoT sensors, data analytics for switchgear health monitoring and integration into digital twins and remote dashboards
- Carryout arc-flash containment and post-incident recovery, emergency switching and isolation, restoration sequences and load prioritization and black-start operation and synchronization
- Discuss marine specific protection schemes

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**®). The **H-STK**® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of medium-voltage switchgear focused on marine 6.6 kV systems for marine electrical engineers, shipboard electricians and technicians, marine superintendents and technical managers, electrical design engineers, maintenance engineers and supervisors, shipyard and dockyard personnel, classification society inspectors and surveyors and naval architects and marine consultants.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. William Loock, is a Senior Electrical Engineer with over 30 years of extensive experience in Oil & Gas, Refining, Energy and Utility industries. His expertise widely includes in the areas of Electrical Distribution, HV/MV Switchgear, HV Switching & Live Working Restrictions, Arc-Flash Risk Assessment, Vacuum Circuit Breaker (VCB), Variable Frequency Drives (VFDs), Fuses & Circuit Breakers, Portable Electronic Tools & Equipment, Batteries & Battery Rooms,

Power Flow & Load Distribution Analysis, Protection System & Relays, Electrical Isolation, Tagging & Locking, Partial Discharge Detection & Interpretation, Emergency Switching & Isolation, Busbars, Circuit Breakers, Instrument Transformers, Cable Terminations, Control & Interlocking Systems, Relay & Breaker Interface Testing, Digitalization & Smart Switchgear, Redundancy & Blackout Prevention, Communication & Automation Integration, Factory Acceptance Tests (FAT), Site Acceptance Tests (SAT), Power Quality & Harmonic Control, Electrical Safety in the Workplace, Safety-Related Work Practices & Procedures, Electrically Safe Work Condition, Substation Automation Systems & Application, Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD), Electrical Switching Practices, Electrical Safety (IEC, OSHA, NFPA & EN Standards), Electricity & Electrical Codes, Renewable Energy & Solar Systems, Integrated Renewable Energy Resources, Smart Grid & Renewable Integration, Solar Photovoltaic Systems, Solar Energy & Electrical System Designs, Nuclear Engineering, CCTV Monitoring, CCTV Equipment Operation & Corresponding Maintenance, CCTV Operating System & Report Writing, Strategic Security Management, Security Risk Management, Security Threat Identification, Risk Analysis Evaluation & Management, Security Operations & Management, Investigation & Security Surveying, Security Crisis Management, Corporate Security Planning and **Security** Policies & Procedures.

During his career life, Mr. Loock has gained his practical and field experience through his various significant positions and dedication as the CEO. Electroplating **Plant** Manager. Qualified Electroplating Engineer. **Electroplating** Instructor & Curriculum Designer and Senior Instructor/Lecturer for various international companies such as the SASOL, SAPPI, MONDI, South African Air Force (Electroplating Engineering), Circuit Breaker Industries, C.Y Security, Tusk Security, Sanibonani Facility Management and Rooiberg Solar Companies, just to name a few.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 23rd of November 2025

Duy 1.	Ouriday, 20 Or November 2020
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Marine Electrical Distribution Architecture
	Main and Emergency Switchboards Configuration • Power Generation and
	Distribution Hierarchy (Main, Emergency, Essential) • Ring Main and Radial
	Feeder Arrangements in Vessels • Typical Single-Line Diagrams for 6.6 kV
	Systems
0930 - 0945	Break
	Medium-Voltage Switchgear Fundamentals
	Role and Function in Marine Electrical Systems • 6.6 kV Voltage Level
0945 - 1030	Selection and Rating Criteria • Differences Between Shore and Marine
	Switchgear Design • Standards and Classification References (IEC 60092,
	ABS, DNV, Lloyd's)
	System Components & Layout
	Busbars, Circuit Breakers, Contactors, Instrument Transformers •
1030 – 1130	Compartmentalization and Segregation (Form 3b/Form 4a) • Cable
	Terminations, Gland Plates and Space Optimization • Marine Switchroom
	Environmental Conditions (Humidity, Vibration)
	Power Flow & Load Distribution Analysis
1130 – 1215	Load Balance Between Generators and Propulsion Motors • Parallel Operation
	and Synchronization • Redundancy and Power Continuity Concepts (N+1,
	Split Bus) • Fault Current Paths and Coordination

1215 - 1230	Break
1230 – 1330	Classification Society & Safety Requirements
	DNV, ABS, and Lloyd's Register Switchgear Approval Criteria • IP Ratings,
	Shock Protection and Arc Containment • Short-Circuit Withstand and
	Temperature Rise Testing • Earthing Philosophy for Marine Installations
1330 – 1420	Control & Monitoring Interfaces
	Mimic Diagrams and HMI Integration • Remote Control and Indication
	Features • Integration with Ship Automation and PMS • Alarm and Event
	Logging
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Monday, 24th of November 2025

Day 2:	Monday, 24 th of November 2025
0730 – 0830	Protection System Overview Protection Objectives in Shipboard Networks • Overcurrent, Short-Circuit, and Earth-Fault Protection Principles • Zone Discrimination and Selectivity • Arc-Flash Protection Schemes
0830 - 0930	Protection Relays & Settings Numerical Relay Types for 6.6 kV (Generator, Feeder, Motor, Transformer) • CT/VT Selection and Burden Considerations • Relay Coordination Curves and Grading Margins • Parameterization and Configuration Examples
0930 - 0945	Break
0945 - 1100	Control & Interlocking Systems Manual, Electrical, and Mechanical Interlocks • Dead-Bus and Live-Bus Transfer Logic • Synchronizing Check Relays and Intertripping Schemes • Preventing Backfeed and Islanding
1100 – 1215	Marine-Specific Redundancy & Blackout Prevention Split Bus Operation and Bus Tie Interlocks • Automatic Load Shedding Systems • Emergency Switchboard Interconnection • Black-Start Procedures and Control Logic
1215 - 1230	Break
1230 - 1330	Communication & Automation Integration Interface with PMS, SCADA, and ECR Systems • Data Exchange Protocols (Modbus, IEC 61850, CANbus) • Event Recording and Fault Analysis • Remote Diagnostic Access and Cyber Security Aspects
1330 - 1420	Case Studies: Protection & Control Failures Analysis of Past Marine Switchgear Incidents • Lessons Learned on Protection Coordination • Best Practices for Reliability and Safety Improvement • Hands- On Review of Relay Event Records
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3: 0730 – 0830	Operation of 6.6 kV Switchgear
	Normal Switching, Transfer, and Isolation Procedures • Generator Paralleling
	and Load Transfer Sequences • Interlocking Verification Before Switching •
	Safe Energization and De-Energization Protocols
	Routine & Preventive Maintenance
0830 - 0930	Periodic Inspection Schedules (Daily, Monthly, Annual) • Cleaning,
0030 - 0930	Lubrication, and Torque Checking • Contact Wear Measurement and
	Replacement Intervals • Infrared and Partial Discharge Monitoring
0930 - 0945	Break
	Safety & Permit-to-Work Procedures
0945 - 1100	Electrical Isolation, Tagging and Locking • HV Switching and Live Working
0943 - 1100	Restrictions • Arc-Flash Risk Assessment and PPE Requirements • Marine
	Confined-Space and Environmental Safety
	Condition-Based Maintenance & Diagnostics
1100 – 1215	Partial Discharge Detection and Interpretation • Online Monitoring Sensors
1100 - 1213	(Temperature, Humidity, Vibration) • CBM Data Trending and Analysis •
	Integration with Asset Management Systems
1215 - 1230	Break
	Environmental Challenges in Marine Installations
1230 - 1330	Salt Corrosion and Condensation Effects • Vibration and Mechanical Shock
1230 – 1330	Mitigation • Space Constraint Management and Modular Design • Fire
	Detection and Suppression Within Switchboards
	Failure Reporting & Documentation
1330 – 1420	Maintenance Records and Class Audit Requirements • Fault Incident Logging
	and Corrective Actions • Root Cause Analysis Procedures • Integration of
	Reports into PMS
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
	Discussed Tomorrow

Day 4:	Wednesday, 26 th of November 2025
	Vacuum Circuit Breaker (VCB) Princ

Lunch & End of Day Three

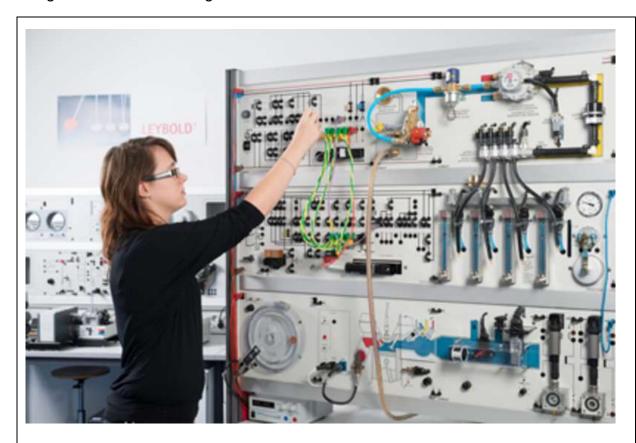
	Vacuum Circuit Breaker (VCB) Principles
0730 – 0830	Design and Construction of Marine-Rated VCBs • Vacuum Interrupter Characteristics and Arc Quenching • Contact Erosion Limits and Monitoring • Comparison with SF ₆ and Air Circuit Breakers
0830 - 0930	Testing & Inspection Procedures Visual Inspection and Mechanical Operation Tests • Contact Resistance and Insulation Resistance Tests • Hi-Pot and Dielectric Withstand Testing • Timing and Travel Curve Analysis
0930 - 0945	Break
0945 – 1100	Commissioning & Functional Verification Factory Acceptance Tests (FAT) and Site Acceptance Tests (SAT) • Interlock Checks and Operational Simulations • Protection Relay Coordination Verification • Integration with PMS/SCADA

1430

1100 – 1215	Troubleshooting VCBs & Control Circuits
	Common Trip Faults and Failure Modes • Secondary Circuit and Control
	Wiring Checks • Undervoltage and Shunt Trip Malfunctions • Fault Isolation
	Through Diagnostic Tools
1215 - 1230	Break
1220 1220	Relay & Breaker Interface Testing
	Secondary Injection and Trip Testing • Primary Injection Current Tests •
1230 – 1330	Simulation of Protection Operations • Testing Under Marine Environmental
	Stress Conditions
	Hands-On Practical Session / Case Exercises
1330 – 1420	Use of Relay Testing Kits (Omicron/ISA) • VCB Dismantling and Contact
1550 - 1420	Examination • Interpretation of Test Reports • Class Verification
	Documentation Practices
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5: Thursday, 27th of November 2025

Day 5:	Thursday, 27 th of November 2025
	System Reliability & Redundancy Concepts
0730 - 0830	N+1 Design Principle and Dual Bus Systems • Failure Mode and Effect
	Analysis (FMEA) • Blackout Recovery and Redundancy Management •
	Reliability-Centered Maintenance (RCM)
	Power Quality & Harmonic Control
0830 - 0930	Harmonics Due to Variable Frequency Drives (VFDs) • Power Factor
0030 - 0930	Correction and Reactive Power Management • Harmonic Filters and Active
	Compensators • Marine EMC/EMI Standards Compliance
0930 - 0945	Break
	Classification & Regulatory Compliance
0045 1100	DNV/ABS Inspection and Test Protocols • SOLAS and IMO Electrical
0945 – 1100	Requirements • Documentation for Class Surveyors • Change Management
	and Modification Approvals
	Digitalization & Smart Switchgear Trends
1100 1215	Digital Relays and Self-Diagnostic Features • Predictive Maintenance Using
1100 – 1215	IoT Sensors • Data Analytics for Switchgear Health Monitoring • Integration
	into Digital Twins and Remote Dashboards
1215 - 1230	Break
1230 – 1300	Emergency Scenarios & Fault Management
	Arc-Flash Containment and Post-Incident Recovery • Emergency Switching
	and Isolation • Restoration Sequences and Load Prioritization • Black-Start
	Operation and Synchronization



1300 - 1345	Marine - Specific Protection Schemes (e.g., PMS, Blackout Recovery)
	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes the following practical sessions using Haward's HV Switchgears:-

- (1) Switching Programs
- (2) Isolation Certificates
- (3) Electrical Permit to Work
- (4) Danger Notices & Pre-Cautions
- (5) Sanction for Test

- (6) Lock-Out & Tag-Out
- (7) Safe Key Systems
- (8) Electrical Safety Systems-Interlocks-Earthing-Isolation & Access Control
- (9) Fault Reports

Switchgear Simulator

Switchgear Simulator

Switchgear Simulator

<u>Course Coordinator</u>
Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

EE0904 - Page 12 of 12