

COURSE OVERVIEW DE0624-4D Understand Water Flooding, Reservoir Souring & Water Breakthrough

Course Title

Understand Water Flooding, Reservoir Souring & Water Breakthrough

Course Date/Venue

December 09-12, 2024/ Al Aziziya Hall, The Proud Hotel Al Khobar, Al Khobar, KSA

Course Reference

DE0624-4D

Course Duration/Credits

Four days/2.4 CEUs/24 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of water flooding, reservoir souring and water breakthrough. It covers the basic concepts of reservoir souring and water breakthrough; the operational troubleshooting techniques to arrive to the cause and to eliminate it through a solution development; the process and equipment problems including past problems associated with start up, shut down, ESD and standard noncompliance; and the prolonged feed specification, sea water and effluent water quality and chemical dosage problems.

Further, the course will also discuss the pressure management and problems; the factors affecting waterflood success; the types of oil reservoirs more favorable for water flood; the integrity management in water injection wells; the water flood plant injection water quality and chemical treatment; the annulus pressure management, water injection problems and injection well integrity; the injection profiles, drilling patterns and reservoirs response to water influx; and the water lifting/transfer from source location and filtration and chemical injection.

this interactive course, participants will learn the water property Durina monitoring/recording; the high pressure and high flow rate pumping equipment; installing and operating temporary injection facilities; the optimization of chemicals and quality control; the water treatment plant operator, water sources and treatment; the reservoir management and intake structures; the types of water problems, corrosion control and tools of diagnosis the water problems; the methods of water control; monitoring and analysing water production; the water separation and treatment; the layouts of field production facilities, scale, bacteria and corrosion problems; the water treatment methods and corrosion monitoring; the chemical treatment and corrosion control; and the role of operations optimizations to avoid corrosion.

Course Competency

- Multi-dimensional and multi-discipline level problem solving
- Troubleshoot basic operations and equipment
- Grip on typical problem and the underlying failures covering hands on examples
- Communicate results within plant and between several plants using Company prescribed procedures, protocols and media to attain others
- Communicate observations, findings and results to Fields Development (FD) and Reservoir Studies (RST) Teams through designated person-in-charge of Water Handling Facilities.
- Analyze start-up, shut-down, utility failure, ESD, process major upsets, cause & effects scenarios, flare scenarios, material safety data sheets etc.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on water flooding, reservoir souring and water breakthrough
- Define reservoir souring and water breakthrough issues for sea water and effluent water injection wells of Water Handling Facilities (CIF & CIPF Extension)
- Monitor and understand different operational parameters as well as eliminate the source of trouble in a structured manner
- Discuss basic concepts of reservoir souring and water breakthrough
- Identify and define reservoir souring and water breakthrough
- Apply operational troubleshooting techniques to arrive at the cause and eliminate it through a solution development
- Carryout process and equipment problems and include past problems associated with start-up, shut down, ESDS and standards non-compliance
- Recognize prolonged feed specification, sea water, effluent water quality and chemical dosage problems
- Identify pressure management and problems, water flood example, factors affecting waterflood success and types of oil reservoirs more favorable for water flood
- Apply integrity management in water injection wells including water flood plant injection water quality and chemical treatment

- Employ annulus pressure management and discuss water injection problems and the injection well integrity
- Determine injection profiles, design drilling patterns and determine the reservoirs response to water influx
- Illustrate water lifting/transfer from source location, filtration, chemical injection and water property monitoring/recording
- Identify high pressure, high flow rate pumping equipment as well as install and operate temporary injection facilities
- Optimize chemicals and quality control and recognize the water treatment plant operator
- Carryout water sources and treatment, reservoir management and intake structures
- Recognize the types of water problems and corrosion control, tools of diagnosis the water problems and methods of water control
- Monitor and analyze water production and illustrate water separation and treatment including layouts of field production facilities
- Identify scale, bacteria and corrosion problems and apply water treatment methods and corrosion monitoring
- Carryout chemical treatment and corrosion control and discuss the role of operations optimizations to avoid corrosion

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides a basic overview of all significant aspects and considerations of water flooding, reservoir souring and water breakthrough for water handling field operators, production engineers, petroleum engineers, reservoir engineers, chemists and operators who need to understand water problems in water flooding project.

Exam Eligibility & Structure

Exam Candidates shall have the following minimum prerequisites:-

Knowledge and experience of operations & maintenance (O&M) manuals, basic troubleshooting methodology for reservoir sourcing and water breakthrough.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• <u>The International Accreditors for Continuing Education</u> and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or **24 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Stan Constantino, MSc, BSc, is a Senior Petroleum & Reservoir Engineer with over 35 years of Offshore & Onshore extensive experience within the Oil, Gas & Petroleum industries. His area of expertise include Reserves & Resources, Reserves Estimation & Uncertainty, Reservoir Characterization, Unconventional Resource & Reserves Evaluation, Oil & Gas Reserves Estimation, Methods for Aggregation of Reserves & Resources, Fractured Reservoir Classification & Evaluation, Petrophysics & Rock Properties, Seismic Technology, Geological Modelling, Water Saturation, Crude Oil & Natural Gas Demand, Exploration Agreements & Financial Modelling, Seismic Survey Evaluation, Exploration Well Identification, Field

Production Operation, Field Development Evaluation, Crude Oil Marketing, Core & Log Data Integration, Core Logging, Advanced Core & Log Integration, Well Logs & Core Analysis, Advanced Petrophysics/Interpretation of Cased Hole Logs, Cased Hole Formation Evaluation, Cased Hole Formation Evaluation, Cased Hole Evaluation, Cased-Hole Logging, Applied Production Logging & Cased Hole & Production Log Evaluation, Cased Hole Logging & Formation Evaluation, Open & Cased Hole Logging, Screening of Oil Reservoirs for Enhanced Oil Recovery, Enhanced Oil Recovery, Enhanced Oil Recovery Techniques, Petroleum Economic Analysis, Oil Industry Orientation, Oil Production & Refining, Crude Oil Market, Global Oil Supply & Demand, Global Oil Reserves, Crude Oil Types & Specifications, Oil Processing, Oil Transportation-Methods, Oil & Gas Exploration and Methods, Oil & Gas Extraction, Technology Usage in Industrial Security, Upstream, Midstream & Downstream Operations; Oil Reservoir Evaluation & Estimation, Oil Supply & Demand, Oil Contracts, Government Legislation & Oil Contractual Agreements, Oil Projects & Their Feasibility (revenue and profitability), Water Flooding, Reservoir Souring & Water Breakthrough, Reservoir Performance Using Classical Methods, Fractured Reservoir Evaluation & Management, Reservoir Surveillance & Management, Reservoir Engineering & Simulation, Reservoir Monitoring, Pressure Transient Testing & Reservoir Performance Evaluation, Reservoir Characterization, Reservoir Engineering Applications with ESP and Heavy Oil, Reservoir Volumetrics, Water Drive Reservoir, Reserve Evaluation, Rock & Fluid Properties, Fluid Flow Mechanics, PVT Analysis, Material Balance, Darcy's Law & Applications, Radial Flow, Gas Well Testing, Natural Water Influx, EOR Methods, Directional Drilling, Drilling Production & Operations, Field Development & Production of Oil & Gas, Wireline Logging, Mud Logging, Cased Hole Logging, Production Logging, Slick Line, Coil Tubing, Exploration Wells Evaluation, Horizontal Wells, Well Surveillance, Well Testing, Design & Analysis, Well Testing & Oil Well Performance, Well Log Interpretation (WLI), Formation Evaluation, Well Workover Supervision, Pressure Transient Analysis and Petrophysical Log Analysis. Currently, he is the CEO & Managing Director of Geo Resources Technology wherein he is responsible in managing the services and providing technical supports to underground energy related projects concerning field development, production, drilling, reservoir engineering and simulation.

Throughout his long career life, Mr. Stan has worked for many international companies such as the Kavala Oil, North Aegean Petroleum Company and Texaco Inc., as the Managing Director, Operations Manager, Technical Trainer, Training Consultant, Petroleum Engineering & Exploration Department Head, Assistant Chief Petroleum Engineer, Reservoir Engineer, Resident Petroleum Engineer, Senior Petroleum Engineer and Petroleum Engineer wherein he has been managing the evaluation of exploration wells, reservoir simulation, development training, production monitoring, wireline logging and well testing including selection and field application of well completion methods.

Mr. Stan has a Master's degree in Petroleum Engineering and a Bachelor's degree in Geology from the New Mexico Institute of Mining & Technology (USA) and from the Aristotelian University (Greece) respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership of Management (ILM) and a member of the Society of Petroleum Engineers, USA (SPE), Society of Well Log Professional Analysts, USA (SPWLA) and European Association of Petroleum Geoscientists & Engineers (EAGE). Moreover, Mr. Stan published numerous scientific and technical papers and delivered various trainings, courses and workshops worldwide.

Course Fee

US\$ 6,750 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours: -

30% Lectures 20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

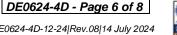
Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1 Monday 09th of December 2024

0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0900	Basic Concepts of Reservoir Souring & Water Breakthrough
0900 - 0930	Identification & Definition of Reservoir Souring & Water Breakthrough
0930 - 0945	Break
0945 - 1030	What is a "Water Flood" & How does it Work?
1030 - 1100	What Types of Properties Make Better Candidates?
1100 - 1130	How does the Water Flood Work
1120 1200	Applying Operational Trouble Shooting Techniques to Arrive to the
1130 – 1200	Cause & to Eliminate it Through a Solution Development
1200 - 1230	Process & Equipment Problems Including Past Problems Associated
	with Start Up, Shut Down, ESD & Standard Non-compliance
1230 - 1245	Break
1245 - 1315	Prolonged Feed Specification, Sea Water & Effluent Water Quality &
	Chemical Dosage Problems
1315 - 1345	Pressure Management & Problems
1345 - 1420	Water Flood Example
1420 - 1430	Recap
1430	Lunch & End of Day One

Tuesday 10th of December 2024 Dav 2


0730 - 0830	Factors Affecting Waterflood Success
0830 - 0930	Types of Oil Reservoirs More Favorable for Water Flood
0930 - 0945	Break
0945 - 1030	Integrity Management in Water Injection Wells
1030 - 1100	Real Case Study

1100 - 1130	Water Flood Plant Injection Water Quality
1130 - 1200	Water Flood Plant Chemical Treatment
1200 - 1230	Annulus Pressure Management
1230 - 1245	Break
1245 - 1315	Water Injection Problems

1315 - 1345	The Injection Well Integrity
1345 - 1400	Determining Injection Profiles
1400 - 1420	Designing Drilling Patterns
1420 - 1430	Recap
1430	Lunch & End of Day Two

Wednesday 11th of December 2024 Day 3

Determining the Reservoirs Response to Water Influx
Water Lifting/Transfer from Source Location
Break
Filtration & Chemical Injection
Water Property Monitoring/Recording
High Pressure, High Flow Rate Pumping Equipment
Installation & Operation of Temporary Injection Facilities
Optimization of Chemicals & Quality Control
Break
The Water Treatment Plant Operator
Water Sources & Treatment
Recap
Lunch & End of Day Three

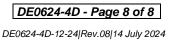
Thursday 12th of December 2024 Day 4

0730 - 0830	Reservoir Management & Intake Structures
0830 - 0930	Types of Water Problems & Corrosion Control
0930 - 0945	Break
0945 - 1030	Tools of Diagnosis the Water Problems
1030 - 1100	Methods of Water Control
1100 - 1130	Monitoring & Analysis the Water Production
1130 - 1200	Water Separation & Treatment
1200 - 1230	Layouts of Field Production Facilities
1230 - 1245	Break
1215 - 1245	Scale, Bacteria & Corrosion Problems
1245 - 1315	Water Treatment Methods & Corrosion Monitoring
1315 - 1330	Chemical Treatment & Corrosion Control
1330 - 1345	The Role of Operations Optimizations to Avoid Corrosion
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes the real-life case studies and exercises:-

Course Coordinator


Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

