COURSE OVERVIEW IE0605 Advanced Gas Metering & Gas Chromatography Systems

Principles, Operation, Calibration, and Data Integration

Course Title

Advanced Gas Metering & Gas Chromatography Systems: *Principles, Operation, Calibration, and Data Integration*

Course Date/Venue

December 14-18, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Reference

Course Duration/Credits
Five days/3.0 CEUs/30 PDHs

IE0605

This practical and highly-interactive course includes practical sessions and exercises where participants will visit the laboratory and they will be introduced to various lab instruments and gas chromatography process. Practical sessions will be performed using one of the lab equipment in order to apply the theory learnt in the class.

This course is designed to provide participants with a detailed and up-to-date overview of Advanced Gas Metering & Gas Chromatography Systems: Principles, Operation, Calibration, and Data Integration. It covers the principles of gas flow measurement including gas properties, flow characteristic essentials and differential pressure, volumetric and mass flow measurement; the metering technologies, system components and configuration and design and installation practices; and the error sources and measurement uncertainty including operation of gas metering systems.

Further, the course will also discuss the preventive and predictive maintenance, calibration of gas flow meters, laboratory calibration and data verification; the maintenance and reliability in metering, advanced diagnostics, digital communication, remote monitoring and data acquisition; the fundamentals of gas chromatography; and the GC system components and operation, GC calibration and quality assurance.

During this interactive course, participants will learn the preventive maintenance of GC systems, GC data analysis and application in custody transfer and process measurement; the data management and reporting, supervisory systems for gas measurement, regulatory and fiscal compliance and communication protocols; linking measurement systems to business processes; and the operational auditing and error investigation.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an advanced knowledge and the principles, operation, calibration, and data integration of gas metering and gas chromatography systems
- Discuss the principles of gas flow measurement including gas properties, flow characteristic essentials and differential pressure, volumetric and mass flow measurement
- Apply metering technologies, system components and configuration and design and installation practices
- Recognize error sources and measurement uncertainty including operation of gas metering systems
- Carryout preventive and predictive maintenance, calibration of gas flow meters and laboratory calibration and data verification
- Employ maintenance and reliability in metering, advanced diagnostics and digital communication and remote monitoring and data acquisition
- Discuss the fundamentals of gas chromatography and apply GC system components and operation, GC calibration and quality assurance
- Implement preventive maintenance of GC systems, GC data analysis and application in custody transfer and process measurement
- Apply data management and reporting, supervisory systems for gas measurement, regulatory and fiscal compliance and communication protocols
- Link measurement systems to business processes and apply operational auditing and error investigation

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of gas and liquid measurement technologies, operation, calibration and gas chromatography for measurement engineers and technicians, instrumentation and control engineers, process engineers, calibration and metrology personnel, operations and maintenance staff, laboratory technicians, quality assurance and compliance officers and supervisors and managers.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Nikolas Karnavos, MSc, BSc, is a Senior Analytical Chemist with over 30 years of extensive experience within the Oil, Gas, Refinery and Petrochemical industries. His expertise widely covers Gas & Liquid Chromatograph Process Analysers, Process Analyzer Techniques (Online & Offline), Laboratory Information Management System (LIMS), Data & Method Validation in Analytical Laboratories, Laboratory Automation Techniques, Practical Problem Solving in Chemical Analysis, Practical

Statistical Analysis of Lab Data, Chemical Laboratory, Analytical Laboratory & Instrumentation, Laboratory Health & Safety, GLP, Laboratory Quality Management (ISO 17025), ISO 9001 and Medical Laboratory Quality Management (ISO 15189). Further, he is also well-versed in Environmental Online Analyzers (Air & Water), Gas Chromatography and various instrumental methods of analysis such as Water Analysis & Quality Control, Water and Wastewater Chemical Analysis, Statistical Data and Laboratory Analysis, Gas Analysis, Qualitative Fuel Analysis, Environmental Chemical Analysis, Laboratory Environmental Analysis including Water Quality Testing, Process Water and Wastewater Effluents, Oily Sludge Treatment, Atomic Absorption and Spectroscopic Methods in Analytical Chemistry, Analytical Method Development and Methods of **Environmental Measurements (Water, Air, Liquid & Solid Wastes).**

Mr. Karnavos was the Laboratory Manager of Exxon wherein he was responsible for ISO 17025 certification, upgrading laboratory equipment in refinery, petrochemical and polypropylene plants, upgrading and extending LIMS, handling the transition plan process of the existing laboratory to a new as well as formulating and executing the plans for applied research and technology transfer. During his career life, he had occupied several significant positions as the Laboratory Analyst, Laboratory Professor, Quality Manager, Partner & Managing Director, Environmental Engineer, Process Engineer, Environmental Management Corporate Department Head and Quality Control & Plastics Application Head with different international companies like the AQUACHEM, Hellenic Petroleum (EXXON) and Technological Institute.

Mr. Karnavos holds a Master degree in Chemical Engineering and Bachelor degrees in Mechanical Engineering and Petroleum Engineering from the Aristotelian University of Thessaloniki, Technological Institute and KATEE Kavala respectively. He is an Accredited Trainer for the Organization for the Certifications & Vocational Guidance (EOPPEP), а Certified Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM), a Certified Instructor/Trainer and an Accredited Environmental Auditor from the IEMA. Further, he is the President of Greek Association of Chemical Engineers and an active member of various professional engineering bodies internationally like the IEMA, Technical Chamber of Greece and the CONCAWE. He also published numerous books and scientific papers and delivered various trainings and workshops worldwide.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Foundations of Gas Flow Measurement

Day 1.	Touridations of Cas Flow Measurement
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0900	Principles of Gas Flow Measurement Gas Properties and Flow Characteristic Essentials • Differential Pressure,
	Volumetric, and Mass Flow Measurement • Mechanical versus Electronic Devices
0900 - 0930	Overview of Metering Technologies
	Turbine, Ultrasonic, Vortex, Coriolis Meters • Selection Criteria for Gas Meters
0930 - 0945	Break
	System Components & Configuration
0945 - 1030	Transmitters, Flow Computers, SCADA/DCS Integration • System Accuracy and Repeatability
1030 - 1130	Design & Installation Practices
	Skid Design, Piping Layout, Installation Best Practices
	Error Sources & Measurement Uncertainty
1130 – 1215	Error Types, Calibration Drift, Environmental Impacts • Data Correction and
	Compensation
1215 – 1230	Break
	Operation of Gas Metering Systems
1230 - 1330	Start-up, Shutdown Procedures, Diagnostics • Reading/Interpreting Metering
	Data, Safety Precautions

1330 – 1420	Preventive & Predictive Maintenance Sensor Inspection, Troubleshooting Failures • Reliability-Centered Maintenance, Documentation
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Dav 2: Advanced Metering Operation, Calibration, and Error Control

Day Z.	Advanced Metering Operation, Cambration, and Error Control
	Calibration Fundamentals
0730 – 0830	Importance and Standards, Traceability (ISO/IEC 17025) • Primary versus
	Secondary Calibration Methods
	Calibration of Gas Flow Meters
0830 - 0930	Setup and Procedure for Turbine, Ultrasonic and Coriolis Meters • Comparison
	Techniques, Zero Flow, and Linearity Verification
0930 - 0945	Break
0045 1100	Laboratory Calibration & Data Verification
0945 – 1100	Calibration Rigs, Correction Factors, Recording, and Verification
1100 1145	Practical Demonstration/Case Studies
1100 – 1145	Data Interpretation, Troubleshooting Calibration Issues
1145 1015	Maintenance & Reliability in Metering
1145 - 1215	Scheduling, Spare Parts Management, Best Practices
1215 - 1230	Break
	Advanced Diagnostics & Digital Communication
1230 - 1330	Supervisory Integration, Smart Transmitters • HART, Modbus, Digital
	Protocols
1330 - 1420	Remote Monitoring & Data Acquisition
	Automated Flow Control, Remote Diagnostics
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Dav 3: Principles & Practice of Gas Chromatography (GC)

Duy o.	Timespies a Fractice of Cas Omomatography (CO)
0730 - 0830	Fundamentals of Gas Chromatography
	Principle of Operation, Separation, Detection • Columns, Injectors, Detectors,
	Carrier Gases
0830 - 0930	GC System Components & Operation
	Installation, Configuration, Sampling Methods • Emerson GC Example
	Overview
0930 - 0945	Break
0945 – 1100	GC Calibration & Quality Assurance
	Calibration Gases, Reference Standards • Baseline, Detector Tuning,
	Troubleshooting
1100 – 1145	Preventive Maintenance of GC Systems
	Scheduled Checks, Cleaning, Performance Issues
1145 - 1215	GC Data Analysis
	Chromatograms, Component Identification, Quantitative Analysis
1215 – 1230	Break

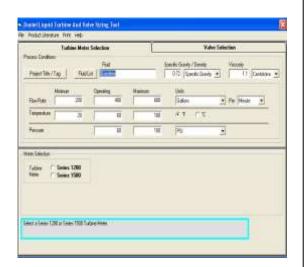
1230 - 1330	Application in Custody Transfer & Process Measurement
	Fiscal Role of GC, Linking Results to Metering
1330 - 1420	Group Exercise: Data Analysis Scenarios
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Data Management, Integration & Compliance
0730 - 0830	Data Management & Reporting
	Linking GC and Metering Data, Energy Content Calculation
0830 - 0930	Supervisory Systems for Gas Measurement
	SCADA/DCS, Remote Monitoring Concepts
0930 - 0945	Break
0945 - 1100	Regulatory & Fiscal Compliance
	National/International Standards Overview
1100 1145	Best Practice Reviews
1100 – 1145	Operational Checklists, QA/QC for Gas Measurement
1145 - 1215	Communication Protocols
1143 - 1213	Practical Examples and Troubleshooting
1215 - 1230	Break
1230 – 1330	Linking Measurement Systems to Business Processes
	Reporting, Auditable Trail, Error Tracking
1330 - 1420	Open Forum: Troubleshooting & "Ask the Expert"
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

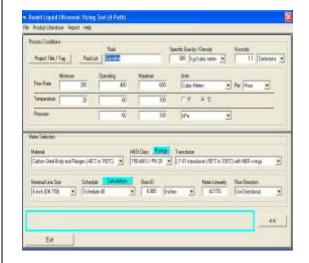
Day 5: Integration, Case Studies & Wrap-Up

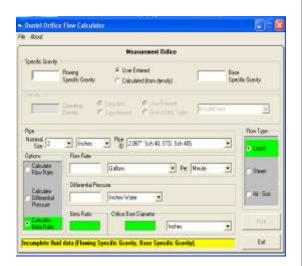
Day o.	integration, case studies & wrap-op
0730 - 0830	Advanced Integration Scenarios
	Real-World Case Studies, Emerson and Multi-Vendor Environments
0830 - 0930	Operational Auditing & Error Investigation
0930 - 0945	Break
0945 – 1100	Practical Data Analysis Session
	Review/Analyze Sample Field and Lab Datasets (Guided)
1100 – 1245	Summary of Best Practices
	Key Takeaways and Action Planning
1245 - 1300	Break
1300 - 1345	Participant Presentations/Feedback
	Sharing Learning, Ideas for Future Improvements
1345 – 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course





Simulator (Hands-on Practical Sessions)


Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "Gas Ultrasonic Meter Sizing Tool", "Liquid Turbine Meter and Control Valve Sizing Tool", "Liquid Ultrasonic Meter Sizing Tool" and "Orifice Flow Calculator" simulator.


Gas Ultrasonic Meter (USM) Sizing Tool
Simulator

<u>Liquid Turbine Meter and Control Valve</u> Sizing Tool Simulator

<u>Liquid Ultrasonic Meter Sizing Tool</u> <u>Simulator</u>

Orifice Flow Calculator Simulator

Practical Sessions/Site Visit

Site visit will be organized during the course for delegates to practice the theory learnt:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

