

COURSE OVERVIEW SE0063 Design of Dynamic Elevated Structures

Course Title

Design of Dynamic Elevated Structures

Course Date/Venue

October 20-24, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

SE0063

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of Design of Dynamic Elevated Structures. It covers the structural dynamics basics and material behavior under dynamic loads; the types of dynamic loads, modeling of dynamic systems and standards and code; the mathematical formulation of dynamics and seismic analysis of elevated structures; the wind-induced vibration analysis and wave and current load analysis; the finite element method (FEM) in dynamic design and soil-structure interaction (SSI); and the elevated structural forms, load path and structural response.

During this interactive course, participants will learn the design against seismic loads, wind and wave loads; the fatigue and fracture considerations, serviceability and deflection criteria; the dynamic response control systems, reliability in dynamic design, risk assessment and safety evaluation; the non-destructive testing (NDT) methods, structural health monitoring (SHM), sensor systems for vibration analysis and maintenance planning; the sustainability in dynamic design and design of tall towers, offshore platforms, elevated tanks and silos; and the team-based project simulation, load definition and modeling, dynamic analysis, design iteration and presentation of results.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on design of dynamic elevated structures
- Discuss structural dynamics and material behavior under dynamic loads
- Recognize types of dynamic loads, modeling of dynamic systems and standards and code
- Analyze mathematical formulation of dynamics and apply seismic analysis of elevated structures, wind-induced vibration analysis and wave and current load analysis
- Carryout finite element method (FEM) in dynamic design and explain soil-structure interaction (SSI), elevated structural forms and load path and structural response
- Discuss design against seismic loads, design against wind and wave loads, fatigue and fracture considerations and serviceability and deflection criteria
- Recognize dynamic response control systems and apply reliability in dynamic design, risk assessment and safety evaluation
- Inspect and monitor elevated structures covering non-destructive testing (NDT) methods, structural health monitoring (SHM), sensor systems for vibration analysis and maintenance planning
- Discuss sustainability in dynamic design and describe the design of tall towers, offshore platforms, elevated tanks and silos
- Illustrate team-based project simulation, load definition and modeling, dynamic analysis, design iteration and presentation of results

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of design of dynamic elevated structures for structural engineers, civil engineers, mechanical engineers, design consultants, construction engineers, project managers, regulatory and safety engineers and other technical staff.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Steve Magalios, CEng, PGDip (on-going), MSc, BSc, is a Senior Civil Engineer with almost 30 years of extensive On-shore & Offshore experience in the Oil & Gas, Construction, Dynamic Evaluation, Structural Analysis & Design (STAAD PRO), Land Surveying & Property Evaluation, Refinery and Petrochemical industries. His expertise widely covers in the areas of Blast Simulation, Blast Resistant & Resilient Design, Building Life Assessment & Retrofit Solutions for Blast Resistance, Seismicity Modelling, Seismic Design for Buildings, Advanced Seismic & Wind Design of Reinforced Concrete, Industrial Building Design, Blast Resistance & Resilient for Oil & Gas Field, Concrete Structures & Building Rehabilitation, Reinforced Concrete Structures Protection, Concrete Structure Inspection & Repair, Concrete Inspection & Maintenance, Concrete Maintenance

Reliability Analysis, Design and Behaviour of Steel Structures, Advanced Steel Design & Stability of Structures Concrete Structural Design, Dynamic Analysis of Rotating Equipment Foundations & Structural Steel Piperacks, Concrete Technology, Construction Planning, Construction & Concrete Works Maintenance, Advanced Building Construction Technology, Geosynthetics & Ground Improvement Methods, Bench Design, Benching, Land Survey and ArcGIS for Earthworks & Management, ArcGIS for Surveying, Computer Aided Design (CAD), AutoCAD Civil 3D, GIS & Mapping, Earth Measurements, Earthwork & Structural Maintenance, System Safety Program Plan (SSPP) Inspection, Building & Road Design Skills, Civil Engineering Design, Structural Reliability Engineering, Road Construction & Maintenance, Road Pavement Design, Road Maintenance, Drainage System Operations & Maintenance, Blueprint Reading & Interpretation. Blue Print Documentation, Mechanical Drawings, P&ID, Flow Diagram Symbols, Cartographic Representation, Soil Classification, Project Engineering & Design, Construction Management, Project Planning & Execution, Site Management, Site Supervision, Project Evaluation, FEED Management, HSE Plan & Procedures, Construction Planning, Methods & Management, Sloping, Embankments, Construction Planning, Construction Quality Management, Project Risk Assessment, Project Quality Plans, Excavation, Backfill & Compaction, Excavation & Reinstatement, Excavation Safety for Construction, Groundworks Supervision, Construction Quality Remote Sensing, Construction Materials, Construction Surveying, Detailed Engineering Drawings, Codes & Standards Quality Plan & Procedures, Safety & Compliance Management, Permit-to-Work Issuer, ASME, API, ANSI, ASTM, BS, NACE, ARAMCO & KOC Standards, MS Office tools, AutoCAD, STAAD-PRO, GIS, ArcInfo, ArcView, Autodesk Map and various programming languages and software such as SHOTPlus, FORTRAN, BASIC and AUTOLISP. Currently, he is the Chartered Professional Surveyor Engineer & Urban-Regional Planner wherein he is deeply involved in providing exact data, measurements and determining properly boundaries. He is also responsible in preparing and maintaining sketches, maps, reports and legal description of surveys.

During his career, Mr. Magalios has gained his expertise and thorough practical experience through challenging positions such as a Project Site Construction Manager, Construction Site Manager, Project Manager, Deputy PMS Manager, Head of the Public Project Inspection Field Team, Technical Consultant, Senior Consultant, Consultant/Lecturer, Construction Team Leader, Lead Pipeline Engineer, Project Construction Lead Supervising Engineer, Civil Engineer, Lead Site Engineer, Senior Site Engineer Lead Engineer, Senior Site Engineer, R.O.W. Coordinator, Site Representative, Supervision Head and Contractor for international Companies such as the Penspen International Limited, Eptista Servicios de Ingeneria S.I., J/V ILF Pantec TH. Papaioannou & Co. – Emenergy Engineering, J/V Karaylannis S.A. – Intracom Constructions S.A., Ergaz Ltd., Alkyonis 7, Palaeo Faliro, Piraeus, Elpet Valkaniki S.A., Asprofos S.A., J/V Depa S.A. just to name a few.

Mr. Magalios is a Registered Chartered Engineer and has a Master's and Bachelor's degree in Surveying Engineering from the University of New Brunswick, Canada and the National Technical University of Athens, Greece, respectively. Further, he is currently enrolled for Post-graduate in Quality Assurance from the Hellenic Open University, Greece. He has further obtained a Level 4B Certificates in Project Management from the National & Kapodistrian University of Athens, Greece and Environmental Auditing from the Environmental Auditors Registration Association (EARA). Moreover, he is a Certified Instructor/Trainer, a Chartered Engineer of Technical Chamber of Greece and has delivered numerous trainings, workshops, seminars, courses and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures
20% Practical Workshops & Work Presentations
30% Hands-on Practical Exercises & Case Studies
20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Monday, 20th of October 2025

0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Dynamic Elevated Structures Definition & Examples (Bridges, Towers, Offshore Platforms) • Historical Evolution & Importance • Applications in Civil, Offshore & Industrial Sectors • Role of Dynamics in Design Safety
0930 - 0945	Break
0945 – 1045	Structural Dynamics Basics Degrees of Freedom (SDOF, MDOF Systems) • Free versus Forced Vibration • Natural Frequency & Resonance • Damping Mechanisms in Structures
1045 - 1145	Material Behavior Under Dynamic Loads Elastic versus Plastic Response • Fatigue Behavior of Steel & Concrete • Composite Material Performance • Influence of Temperature & Environment
1145 – 1230	Types of Dynamic Loads Wind Loads & Gust Effects • Seismic Loads & Ground Acceleration • Wave & Current Loads (Offshore Structures) • Impact & Blast Loads
1230 - 1245	Break
1245 – 1330	Modeling of Dynamic Systems Lumped Mass Models • Continuous System Representation • Modal Analysis Approach • Assumptions & Simplifications

1330 – 1420	Introduction to Standards & Codes AISC, ACI, Eurocode, API Standards • Seismic Design Codes (IBC, UBC) • Offshore Standards (DNV, ISO) • Case Studies of Code Application
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Tuesday, 21 st of October 2025
0730 – 0830	Mathematical Formulation of Dynamics
	Equation of Motion (Newton & D'Alembert) • Matrix Formulation for MDOF
	Systems • Damping Models (Rayleigh, Viscous, Hysteretic) • Analytical versus
	Numerical Solutions
	Seismic Analysis of Elevated Structures
0830 - 0930	Earthquake Ground Motion Characteristics • Response Spectrum Method • Time
	History Analysis • Base Isolation & Damping Devices
0930 - 0945	Break
	Wind-Induced Vibration Analysis
0945 - 1100	Aerodynamic Loading Principles • Vortex Shedding & Resonance • Gust Response
	Factor • Wind Tunnel Testing Applications
1100 – 1230	Wave & Current Load Analysis (Offshore)
	Hydrodynamic Forces (Morison Equation) • Wave Diffraction & Reflection •
	Dynamic Amplification Under Cyclic Loads • Slamming & Impact Forces
1230 - 1245	Break
	Finite Element Method (FEM) in Dynamic Design
1245 – 1330	FEM Discretization Principles • Dynamic Stiffness Matrix Formulation • Modal
	Superposition Method • Software Applications (ANSYS, SAP2000, STAAD.Pro)
1330 – 1420	Soil-Structure Interaction (SSI)
	Foundation Dynamics • Dynamic Impedance Functions • Pile Group Response
	Under Vibration • Case Studies in Seismic SSI
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Wednesday, 22nd of October 2025 Day 3:

	Elevated Structural Forms
0730 - 0830	Towers & Chimneys • Offshore Jackets & Topsides • Elevated Storage Tanks •
	High-Rise Platforms & Bridges
	Load Path & Structural Response
0830 - 0930	Vertical Load Distribution • Lateral Load Resisting Systems • Importance of
	Redundancy • Role of Bracing & Stiffness
0930 - 0945	Break
	Design Against Seismic Loads
0945 - 1100	Ductility & Overstrength • Energy Dissipation Concepts • Seismic Detailing of
	Steel & Concrete • Nonlinear Pushover Analysis

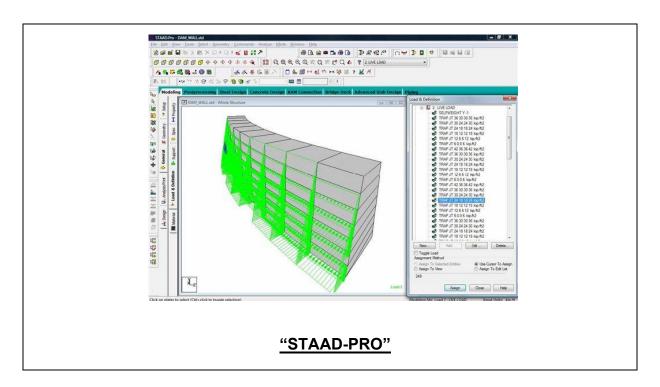
	Design Against Wind & Wave Loads
1100 - 1230	Dynamic Response Control • Tuned Mass Dampers • Offshore Platform Bracing
	Design • Floating versus Fixed Structures
1230 – 1245	Break
	Fatigue & Fracture Considerations
1245 – 1330	Cyclic Loading Behavior • Fatigue Crack Growth Laws • Fracture Mechanics
	Approach • Design Strategies to Prevent Fatigue
1330 - 1420	Serviceability & Deflection Criteria
	Vibration Comfort Limits • Lateral Sway & Drift Limits • Resonance Avoidance •
	Dynamic Stiffness Requirements
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

Day 4: Thursday, 23rd of October 2025

Thursday, 25 of October 2025
Dynamic Response Control Systems
Passive Systems (TMD, Base Isolators) • Active Control Systems • Semi-Active
Control Devices • Smart Materials & Adaptive Systems
Reliability in Dynamic Design
Probabilistic Design Methods • Reliability Index & Safety Factors • Failure
Probability Estimation • Case Studies of Failures
Break
Risk Assessment & Safety Evaluation
Hazard Identification for Dynamic Loads • Risk Matrix & Evaluation • Mitigation
Strategies • Emergency Preparedness
Inspection & Monitoring of Elevated Structures
Non-Destructive Testing (NDT) Methods • Structural Health Monitoring (SHM)
• Sensor Systems for Vibration Analysis • Maintenance Planning
Break
Failure Case Studies
Tacoma Narrows Bridge Collapse • Offshore Platform Failures • Seismic Failures
of Elevated Tanks • Lessons Learned & Design Improvements
Sustainability in Dynamic Design
Energy-Efficient Design Methods • Material Optimization • Lifecycle Cost
Analysis • Sustainable Construction Practices
Recap
Using this Course Overview, the Instructor(s) will Brief Participants about the
Topics that were Discussed Today and Advise Them of the Topics to be Discussed
Tomorrow
Lunch & End of Day Four

Day 5:	Friday, 24th of October 2025
--------	------------------------------

Day 5:	Friday, 24 th of October 2025
	Design of Tall Towers
0730 - 0830	Structural Configuration & Slenderness Ratio • Dynamic Stability Under Wind &
	Seismic • Control Devices for Tall Towers • Case Studies
	Design of Offshore Platforms
0830 - 0930	Jacket versus Floating Structures • Hydrodynamic Load Analysis • Dynamic
	Bracing Design • Reliability-Based Design
0930 - 0945	Break
	Design of Elevated Tanks & Silos
0945 - 1100	Seismic Considerations for Tanks • Dynamic Sloshing Effects • Foundation
	Flexibility • Detailing Practices
	Design Software Workshop
1100 - 1215	SAP2000 Dynamic Analysis • STAAD.Pro for Elevated Tanks & Towers •
	ANSYS for Vibration & Fatigue • Hands-on Case Study
1215 - 1230	Break
	Integrated Design Project
1230 - 1300	Team-Based Project Simulation • Load Definition & Modeling • Dynamic Analysis
	& Design Iteration • Presentation of Results
1300 - 1345	Wrap-Up & Future Trends
	Innovations in Materials (UHPC, Composites) • AI & Machine Learning in
1500 - 1545	Structural Dynamics • Digital Twins for Monitoring Elevated Structures • Future
	of Resilient Elevated Design
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulator "STAAD-PRO".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

